

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

 $Siddharth\ Nagar,\ Narayanavanam\ Road-517583$

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Transportation Engineering (19CE0118)

Course & Branch: B.Tech - CE

Regulation: R19 Year & Sem: III-B.Tech & I-Sem

UNIT –I HIGHWAY ALIGNMENT

1	a) Explain any four highway cross-sectional elements?	[L1] [CO1]	[6M]
1	b) Derive an expression for extra widening in a horizontal curve?	[L1] [CO1]	[6M]
2	Write the basic requirements and factors controlling for ideal alignment between two terminal stations.	[L1] [CO1]	[12M]
3	What are the engineering surveys conducted to fix the alignment of a highway?	[L1] [CO1]	[12M]
4	The speeds of overtaking and overtaken vehicles are 80 kmph and 60 kmph respectively on a two-way traffic road. If the acceleration of the overtaking vehicle is 0.80 m./s ² , calculate the safe overtaking sight distance. Sketch of the overtaking zone with location of sign posts.	[L2] [CO1]	[12M]
5	Enumerate the factors governing the width of carriage way. State the IRC specification for width of carriage way for various classes of roads.	[L1] [CO1]	[12M]
6	Calculate the minimum sight distance required to avoid a head on collision of two cars approaching from opposite directions at 90 and 60 kmph. Assume a reaction time of 2.5 seconds, coefficient of friction of 0.7 and a brake efficiency of 50 per cent, in either case.	[L3] [CO1]	[12M]
7	(a) List the Factors affecting OSD. Explain Lag distance and Braking distance.(b) Explain PIEV theory.	[L1] [CO1] [L1] [CO1]	[8M] [4M]
8	While aligning a highway in a built up area, it was necessary to provide a horizontal curve of radius 300 m for a design speed 65 km/hr, length of wheel base-6m and pavement width 10m. Assume rate of introduction of super elevation as 1 in 100 and super elevation is provided by rotating about centre line. Design super elevation, extra widening of pavement and length of transition curve.	[L3] [CO1]	[12M]
9	A national highway having design speed 80 kmph passing through rolling terrain in heavy rainfall area has a horizontal curve of radius 500 m. Design the length of transition curve assuming suitable data. Pavement is rotated about the center for super elevation.	[L3] [CO1]	[12M]
10	A valley curve is formed by a descending gradient of 1 in 40 meeting with an ascending gradient of 1 in 30. Design the length of valley curve for a design speed of 100 kmph so as to fulfill both comfort conditions and head light sight distance requirements. Assume rate of change of change of centrifugal acceleration as 0.6 m/sec ³ , reaction time 2.5 sec and coefficient of friction 0.35	[L3] [CO1]	[12M]

UNIT –II TRAFFIC ENGINEERING

1	a) Expand PCU and Gi	ive Eq	uivalent PCU	for atleast two c	lass of vehic	les.	[L1][CO2]	[4M]
	b) Give the classification of road markings?					[L1][CO2]	[2M]	
					[L1][CO2]	[2M]		
	d) Explain the significance of traffic studies.					[L1][CO2]	[2M]	
	e) What is the relationship between speed and Flow?				[L1][CO2]	[2M]		
2	The results of a speed study is given in the form of a frequency distribution table. Find the time mean speed and space mean speed.							
		No.	speed range	average speed (v _i)			
		1	2-5	3.5			[L3] [CO2]	[12M]
		2	6-9	7.5				[1211]
		3	10-13	11.5				
		4	14-17	15.5				
3	Explain the various road	l user	characteristic	s to be considere	d in road des	ign	[L1] [CO2]	[12M]
4	Explain the significance studies	e of t	raffic studies	. Briefly explain	any four ty	pes of traffic	[L1] [CO2]	[12M]
5	What are the objectives of Traffic Volume studies? What are the methods of presentation of Volume Data?				[L1] [CO2]	[12M]		
6	Explain grade separated	inters	sections, the a	dvantages and lin	nitations		[L1] [CO2]	[12M]
7	(a) Explain about the various types of on-street parking patterns possible.(b) What are the different types of off-street parking facilities that can be provided in a given area?				[L1] [CO2] [L1] [CO2]	[12M] [12M]		
8	Explain briefly about tra	affic c	ontrol devices	S.			[L1] [CO2]	[12M]
9	Discuss about various I rate.	Engine	eering measur	res that can help	in reducing	time accident	[L2] [CO2]	[12M]
10	A fixed time 2-phase so The design hour traffic at Design Hour flow (pcu/hr) Saturation flow (pcu/hr)	_	-		East 750 3000	West 600 3000	[L3] [CO2]	[12M]
	Time lost per phase due to starting delay is 2 sec and All red period is 4 sec. Design two phase traffic signal using Webster's method.							

Course Code: 19CE0118

UNIT –III PAVEMENT DESIGN

1	a) What are warping stresses? List out the stresses in rigid pavement.	[L1][CO3]	[4M]
	b) List out the types of pavement based on structural behaviour.	[L1][CO3]	[4M]
	c) Draw the stress distribution and cross section in flexible pavements and rigid	[L1][CO3]	[4M]
	pavements?		
2	Draw a sketch of flexible pavement cross section and show the component parts. Enumerate the Functions and importance of each component of the pavement.	[L2][CO3]	[12M]
3	Explain CBR method of pavement design and discuss the method useful in determining the thickness of flexible pavement layers.	[L1][CO3]	[12M]
4	Design a new flexible pavement for a two-lane undivided carriageway using the following data: Design CBR value of subgrade = 8.0%, Initial traffic on completion of construction = 1800 CV per day, Average growth rate = 6.0% per year, Design life = 15 years, VDF value = 2.5.	[L3][CO3]	[12M]
5	What are the factors should be considered for the design of flexible and rigid pavements Discuss the significance of each	[L1][CO3]	[12M]
6	What are the functions of tie bars and dowel bars in rigid pavements? What is the design principle?	[L1][CO3]	[12M]
7	A cement concrete pavement has a thickness of 26 cm and lane width of 3.5 m. Design the tie bars. Along the longitudinal joints using the data given below: Allowable working stress in steel tie bars, $Ss = 1250 \text{ kg/cm}^2$. Unit weight of CC, $W = 2400 \text{ kg/cm}^3$. Maximum value of friction coefficient, $f = 1.2$. Allowable tensile stress in deformed tie bar, $Ss = 2000 \text{ kg/cm}^2$. Allowable bond stress in deformed bars, $Sb = 24.6 \text{ kg/cm}^2$.	[L3][CO3]	[12M]
8	Classify different types of joints in CC pavements and mention the objects of each	[L1][CO3]	[12M]
9	With sketch show the different components of a rigid pavement and mention the functions of each.	[L2][CO3]	[12M]
10	Differentiate between flexible pavements and rigid pavements.	[L1][CO3]	[12M]

Course Code: 19CE0118

UNIT –IV RAILWAY ENGINEERING

1	a) What are the functions of sleepers? Bring out the differences between suspended and supported rail joints	[L2][CO4]	[6M]
1	(b) What are the different types of rails used? Explain the concept of Adzing of sleepers and Discuss about methods of rectifying creep?	[L1][CO4]	[6M]
	(a) Draw a typical cross section of permanent way and show various components.	[L2][CO4]	[6M]
2	(b) What are the advantages and disadvantages of steel sleepers?	[L1][CO4]	[6M]
3	(a) Discuss briefly about the functions of different components of permanent way	[L2][CO4]	[6M]
3	(b) What are the advantages and disadvantages of concrete sleepers?	[L1][CO4]	[6M]
4	(a) Explain causes of creep.	[L1][CO4]	[6M]
-	(b) What are the functions of ballast?	[L1][CO4]	[6M]
5	(a) Explain the concept of creep using percussion theory	[L1][CO4]	[8M]
3	(b) What are the requirements of sleepers?	[L1][CO4]	[4M]
6	(a) What are the requirements of a ideal permanent way?	[L1][CO4]	[8M]
	(b) Explain for coning of wheels.	[L1][CO4]	[4M]
7	(a) Define creep in the rails. Explain various causes of creep.	[L2][CO4]	[6M]
'	(b) What are the requirements of good ballast.	[L1][CO4]	[6M]
8	Explain the role of chairs, keys and fish plates as track fittings and fastenings. Support your Answer with neat sketch.	[L1][CO4]	[12M]
	Giving a typical cross section of a permanent way on an embankment, indicate		
9	various components. Also describe the functions of various components of a	[L2][CO4]	[12M]
)	permanent way.		[14141]
10	What are fastenings? What are the functions and requirements of fastenings	[L1][CO4]	[12M]
		. JL J	. 1

UNIT –V GEOMETRIC DESIGN OF RAILWAY TRACK

1	(a) Define grade compensation? If the ruling gradient is 1 in 140 on a particular section of MG and at the same time a 3.8 degree curve is situated on this ruling gradient, find out the allowable ruling gradient.	[L2][CO5]	[6M]
	(b) What are the operational classifications of stations? Write about requirements of transition curve and the difference between pusher gradient and momentum gradient?	[L1][CO5]	[6M]
2	(a) Discuss briefly the purpose for which railway stations are provided.	[L2][CO5]	[6M]
	(b) Discuss briefly about various components of turnouts.	[L2][CO5]	[6M]
	(a) Explain briefly about wayside station on a single and double railway lines.	[L2][CO5]	[5M]
3	(b) Calculate the maximum permissible speed on a curve of high speed for the following data on a M.G track. Degree of curve 0.9°, amount of super elevation 8.0 cm, length of transition curve 135 m, maximum speed of the section likely sanction speed = 120 kmph.	[L3][CO5]	[7M]
4	(a)What is cant deficiency? Discuss briefly about the limits of cant deficiency.	[L1][CO5]	[6M]
4	(b) Discuss about the requirement of passenger platforms.	[L2][CO5]	[6M]
	(a) Explain briefly about types of Marshalling yards.	[L1][CO5]	[4M]
5	(b) Calculate the maximum permissible speed on a curve of high speed for the following data on a B.G track. Degree of curve 1.2 ₉ amount of super elevation 8.0 cm, length of transition curve 125 m, maximum speed of the section likely sanction speed = 150 kmph.	[L3][CO5]	[8M]
6	(a) Compute the maximum permissible speed for the following data on a curve of high speed B.G for the following data. Degree of curve = 1.2°, Amount of super elevation = 8 cm, Length of transition curve = 150 m, Maximum sanctioned speed likely to be 135 kmph.	[L3][CO5]	[6M]
	(b) What is grade compensation in railway track design? Why is it necessary to provide grade compensation?	[L1][CO5]	[6M]
7	(a) Draw a neat sketch of Left hand turnout and show various parts of turnout.	[L2][CO5]	[7M]
	(b) Explain briefly about cant with equilibrium equation	[L1][CO5]	[5M]
	(a) Explain about negative super elevation and the situation where negative super elevation required in Railway track. Also write limitations	[L1][CO5]	[8M]
8	(b) A 5° curve diverges from a 3° main curve in a reverse direction in the layout of a BG yard. If the speed on the branch line is restricted to 35 kmph, determine the restricted speed on main line.	[L3][CO5]	[4M]
	(a) Explain the classification of gradient in railways.	[L2][CO5]	[6M]
9	(b) If a ruling gradient of 1 in 250 is fixed on a B.G section and a horizontal curve of 40 is also to be introduced over it. What should be the actual ruling gradient?	[L3][CO5]	[6M]
10	Discuss briefly about stations with different types	[L1][CO5]	[12M]

Prepared by: Mrs. A.BRAHMINI Assistant Professor/CE